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Melt Infiltration (M.I.) Composites (HiPerComp®) 
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Microstructure of Slurry Cast MI Composites
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Microstructure of Prepreg MI Composites
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HiNicalon Reinforced MI Composites

Prepreg Slurry Cast

Slurry Cast
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HiNicalon Reinforced MI Composites
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HiNicalon Reinforced MI Composites
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Prepreg MI Composites
Rupture Life (h)
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Foreign Object Damage
• Use ballistic impact to simulate foreign object damage

- 0.175” chrome steel ball bearing at 310m/s (18J)

- damage localized to impact site

- impacted sample exposed in shroud rig for 100 hours

Entrance Exit NDE



Foreign Object Damage
Panel exposed in high 
pressure shroud test rig 
> 50 hours at 1425°C + 50 

thermal shock cycles + 
100 hours at 1315°C 

> Panel sectioned and 
residual tensile strength 
properties measured

> No growth of impact 
damage zone

> Degradation of Bar #1 due 
to end-on oxidation effects
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Material System
Environmental Barrier Coating (EBC) needed for turbine applications to 

prevent silica volatilization and surface recession from water vapor in 
combustion gas

SiO2 +  H2O  → Si(OH)x (gas)

BSAS

BSAS + Mullite

Silicon

MI-CMC

• 3-layer EBC system
• Application by thermal spray 

techniques
• BSAS – water vapor 

recession resistance
• BSAS + mullite – transition 

layer for CTE match
• Silicon – oxidation resistance



Combustion Rig Testing of EBC Coatings
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• Extensive process monitoring & 
computer control for 
unattended operation

• Durable CMC hardware
• 28, 0.5” x 4” coupons are tested 

simultaneously
• Sample surfaces exposed to 

fully turbulent flow
• Total run time > 8000 h
• BSAS EBC’s exposed → 3922 h
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GE2 S2S and S1S Testing 

PGT-2 Turbine Cross Section
Operated at Gas Temp of ~1875F

18.5” CMC Second 
Stage Shroud Ring

Successful Testing of Prepreg CMC Shrouds

Blade Rub on Second
Stage CMC Shroud

S1S and S2S Testing:
- 1070 hrs
- S1S had 46 starts, 24 trips, 1 blade rub
- S2S had 61 starts, 27 trips, plus over 3 blade rubs

First Stage CMC Shroud

View aft looking forward



7FA Field Engine Rainbow Test

CMC Shroud

• Shrouds exposed for 5000+ fired hours and 10+ start/stop cycles with no 
shroud failures, engine operation issues or instrumentation anomalies

• Engine firing temperature range 2250-2350°F (1232-1288°C) on daily cycle
• CMC inner shroud maximum surface temperature ran 2200° to 2300°F

Field Engine Test Was A  Success !Field Engine Test Was A  Success !



Shroud Block Assembly / Instrumentation

OSB with metallic inner shrouds

• Three outer shroud blocks, each 
containing 2 Pre-Preg and 1 
Slurry Cast CMC inner shroud 
were assembled and 
instrumented

• CMC shrouds replicate metal 
shroud hot gas path profile

• 49 thermocouples used for 
monitoring outer shroud block and 
attachments - CMC inner shroud 
temperature inferred from OSB 
measurements and thermal 
models

OSB with CMC  inner shrouds



Unsealed 7FA Shroud Rainbow Engine Test
Post-test inspection shows no structural damage to CMC inner shrouds

• No cracking or mechanical wear of CMC 
• No damage to CMC inner shroud, to outer shroud block or to  

attachments
• Cracking/chipping of EBC along shroud edges was common
• CMC recession in areas of EBC spallation

• No CMC or metallic hardware failures
• Design processes validated
• No CMC or metallic hardware failures
• Design processes validated



Slurry Cast Shrouds Characterization
Characterization of EBC Damage 

– EBC cracking along edges leads to 
eventual EBC chipping

– Pin holes  
- correspond to “tooling bumps” on 
slurry cast shrouds 

- pits “grew” and “linked up” with 
continued exposure

- pin hole growth  and link-up lead to 
larger spall

- localized CMC recession below holes
– EBC spallation observed 

- accompanied by CMC recession

Durability improvements to 1st 
generation EBC are in process

Durability improvements to 1st 
generation EBC are in process



CMC Recession
• EBC spall noted on prepreg shroud during borescope inspections
• CMC exposed to combustion gases following EBC failure
• Observed maximum recession in this region (~0.8mm) was 20% to 70% of 

prediction
• prediction dependent on specific values of the local surface temperature, gas 

flow, humidity and exposure time
• Deeper recession found under slurry cast shroud pin holes (up to 1.3mm)

Prepreg
recession at

EBC spall

Slurry Cast
recession at

EBC pit

Prepreg HiPerComp™ CMC recession 
resistance was better than predicted

Prepreg HiPerComp™ CMC recession 
resistance was better than predicted



Post-test NDE of Prepreg Shrouds

as machined post engine test
(coating removed)

Defects did not grow in Engine test



Post-test NDE of Slurry Cast Shrouds

Green - EBC delaminated 
or undercut by oxidation 

Blue - EBC is intact or 
missing

IR NDE showed 
undercutting of EBC 
tooling bump pits



Slurry Cast CMC Residual Strength

Slurry cast shrouds show loss of strength and 
strain in regions with EBC damage
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Prepreg CMC Shroud Residual Strength
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Rig Testing of Sealed Shroud Design

Rig testing was conducted on new sealed shroud design
> During 1st test a compressor trip caused a combustion gas 

temperature excursion in excess of 3000°F (1650°C) – well 
above Si melting point

> CMC shrouds survived the accidental excursion, but EBC 
spallation occurred due to Si bond coat melting

– Post-test destructive analysis showed CMC shrouds 
retained strength and toughness despite overtemp
condition



Prepreg CMC Combustor Liner in 
Solar CSGT Engine

As Fabricated

Combustor liner fabricated in late 2004
In service in Solar Centaur 50 CSGT engine at 

Chevron/Texaco site in Bakersfield, CA since 
January 2005
> Liner has accumulated >7500 hours and >20 

cycles as of April 17, 2006 
Borescope inspections performed at 3983 and 

5706 hours 
> No distress on CMC
> EBC adherent even on pre-existing 

fabrication flaws
> Some preliminary evidence of EBC cracks 

and one minor spall at 5706 hours – possibly 
related to bond coat or CMC oxidation

> Test Ongoing

Machined and EBC Coated

Borescope
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Barriers and Risks
Life of MI-CMC Components

> Requires tens of thousands of hours
> Damage propagation after FOD damage
> Requires minimization of processing defects in components

Design of Components
> Adequate attachment compliance to account for thermal expansion 

mismatch
> Adequate part sealing to realize cooling air flow and leakage goals

Coating Life
> Required minimum of 24,000 hours
> Damage propagation after FOD or otherwise localized damage

Component Cost
> Target is 1.5 - 2 times the metallic component cost
> Current cost 5 - 20 times metallic component costs



Summary and Conclusions
• Melt Infiltrated SiC/SiC composites are attractive for high temperature 

applications in gas turbines

>High thermal conductivity; low matrix porosity, high proportional limit

• Feasibility of fabricating a wide variety of composites demonstrated

• Successful field engine test of CMC shroud system for >5000 hours and 
>10 cycles at shroud material temperature up to ~12500C

• Additional engine test planned on CMC shrouds 

>With sealing in between shrouds

>Material improvements based on first engine test

• EBC life and CMC cost represent the highest risks in commercialization 
of CMC components

• Technology being transitioned to GE Ceramic Composite Products for 
Scale up, Cost Reduction, and Commercialization
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