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Ceramic components of interest to UTC 

Shroud Integrally Vanes
Bladed Rotor 

EBC coated Si3N4 componentsEBC coated SiC CMCs 
� Enable engine size and weight reduction 

� Reduce CO and NOx 
� Higher combustor liner wall temperatures 

� Provide increased electrical efficiency 
� Improve component durability � Offer overall fuel efficiency 
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SiC/SiC CMC combustor liners 

Industrial Gas Turbines (IGT’s) Microturbines Auxiliary Power Engines for Unmanned 
for CHP Systems Units (APU’s) Air Vehicles (UAV’s) 

A160 Hummingbird 
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SiC and Si3N4 need environmental protection in gas turbines 

� Under dry conditions, Si-based ceramics form a protective oxide scale (SiO2) 
� In gas turbine environments, in the presence of water vapor from the 

combustion process, silica volatilizes resulting in material loss 
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3N4 volatilization in engine testsExamples of SiC and Si

Monolithic Si3N4SiC/SiC CMC 

Solar Turbines Inc. Engine Test Allison Engine Test
Centaur 50S CMC Combustor Liner M501-K 1st Stage Silicon Nitride Vane 

M. K. Ferber et al. ASME 2000-GT-661 
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90% recession in 5018 hrs test @ 1200C 27% recession in 1818 hrs test @ 1200C
~ 440 micron per 1000 hrs 

Environmental Barrier Coatings (EBCs) prevent attack of ceramic 
components by water vapor 
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Si3N4

Bond coat

Oxygen barrier

Steam barrier

Thermal/velocity barrier

Si3N4

Bond coat

Oxygen barrier

Steam barrier

Desirable characteristics of an EBC


Si-based ceramic 

Bond coat 

Steam barrier 

Thermal/velocity barrier 

Oxygen barrier 

� Environmental durability in hot gas environment 
� Oxidation resistance, low oxygen permeability 
� Chemical compatibility between layers and with substrate 
� Thermal expansion compatibility 
� Resistance to erosion 
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Typical steps in design of an EBC system 
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lona, Spain 

Basic material evaluation: CTE, steam stability, 
thermodynamics 

Process 
coatings 

Coupon level evaluation: furnaces 
and simple steam tests 

Burner Rig 
(coupon/component) 

Component rig testing 
Engine demonstrations 

Incorporate learning, improve coatin
g quality

 

ORNL Keiser Rig 
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EBC team formed in 1995 to solve problem of SiC recession 

High Speed Civil Transport EBC team drawn from NASA, GE and PW/UTRC


� BSAS – Barium Strontium Aluminum � YSZ – Yttria stabilized zirconia 
Silicate 

� YSZ is the state of the art thermal barrier 
� Expected steam stability coatings on metal superalloys 

� Good adhesion post thermal cycling � Cracking and spallation post thermal cycles 
due to well matched CTE due to thermal mismatch with substrate 
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BSAS 

150 µm 
SiC/SiC CMC 

Down selected EBC solution 

YSZ 

Mullite 

150 µm 
SiC/SiC CMC 
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Gen 1 BSAS-based EBC for SiC 

BSAS 

Mullite + BSAS 

Silicon Bond Coat 

BSAS – Barium Strontium Aluminum Silicate 

�	 Development was initiated under NASA HSCT (High Speed Civil Transport) EPM 
(Enabling Propulsion Materials) program in mid 1990’s 
�	 Scaled-up and improved under DOE/Solar Turbines CSGT (Ceramic Stationary 

Gas Turbine) program since late 1990’s 
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EBC demonstration under severe thermal gradient 
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� Coating System: Si/mullite/BSAS/mullite 

� Achieved 2700F surface temperature with 300F gradient through EBC 

� EBC coated monolithic SiC survived 100 atmospheric burner rig thermal cycles 

� Analysis shows that success of EBC related to well-matched CTE between 
layers and substrate 
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BSAS-EBC has over 40,000 hours in engine tests 

EBC coated CMCs fielded in Solar Turbines Centaur 50 S combustor liners 

� Bakersfield, CA : 13,937 hours 
� Malden Mills II, MA : 15,144 hours 

SiC Seal Coat on CMC 

CMC 

EBC 

CMC well protected in areas where EBC 

remained intact
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Summary of EBC demonstrations 

Site Substrate EBC Total Hours 

ChevronTexaco 
Bakersfield CA 
# 1 

HACI MI Si / Mullite / BSAS 
13,937 hrs

HACI CVI Si / Mullite-BSAS / BSAS 

Malden Mills 
Lawrence MA 
# I 

BFG MI Si / Mullite-BSAS / BSAS 7,238 hrs, 
refurbishedHACI CVI Si / Mullite-BSAS / BSAS 

Malden Mills 
Lawrence MA 
# 2 

BFG MI Si / Mullite-BSAS / BSAS 
15,144 hrs 

HACI CVI Si / Mullite-BSAS / BSAS 

ChevronTexaco 
Bakersfield CA 
# 2 

BFG MI Si / BSAS 
5,135 hrs 

HACI CVI Si / Mullite-BSAS / BSAS 

Malden Mills 
Lawrence MA 
# 3 

HACI MI Si / SAS* 

8,368 hrs 
HACI MI Si / Mullite-SAS / SAS* 

ChevronTexaco 

Malden Mills 

*Gen 2 EBC based on Strontium Aluminosilicate (SAS) 

HACI Honeywell Advanced Composites now GE – Power Systems Composites

CVI – Chemical Vapor Infiltration; MI Melt Infiltrated CMC; BFG Goodrich
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EBC failure modes – top layer recession 

50 µm 

BSAS 

SiC seal coat 

Si 

SiO2 

Mullite 

Sr–rich phases 

Solar Turbines Engine Test: After 13,937 hrs 

Courtesy of Karren More, ORNL 

After ~14,000 hrs of engine field test ~2200F 

�	 Current efforts aimed at developing an understanding of recession mechanisms 
in complex silicates 

�	 More stable top layer compositions likely to provide improved recession life 
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Failure modes: processing defects, silica growth & spallation 

100 µm100 µm 

Spallation consistently occurs at SiO2/mullite 
interface 

SiO2 pools along processing defects 

After ~5000 hrs of Keiser rig testing ~2200F After ~14,000 hrs of engine field test ~2200F 

Courtesy of Karren More, ORNL 

�	 Current efforts aimed at scale up and minimization of processing defects in 
coating and geometric imperfections on CMCs 
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lona, Spain 

20 µm 

Silica Growth and Spallation BSAS Recrystallization 

EBC failure modes 
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0.5 mm 

Spallation accelerated by tooling bumps CMC 
roughness 

Courtesy of Karren More, ORNL After ~15,000 hrs of engine field test ~ 2200F 

After ~14,000 hrs of engine field test ~ 2200F 



EBC failure modes 

‘Eutectic’ reaction between BSAS and SiO2 limits use temperature


Liquid 

SiO2 2Si2O8 

Tridymite+Liq. 

BSAS 

BSAS-mullite Reaction zone 

Si 

CMC 
BaAl

Cristobalite + Celsian 

Celsian+Liq. 

� Improvements in temperature capability by suppressing eutectic reaction 
� Use defect free mullite to separate BSAS and the silica-former (Si) to 

prevent the eutectic composition 
� Raise eutectic temperature between celsian phase and SiO2 by optimizing 

composition - SAS demonstrated to have higher eutectic temperature than 
BSAS 
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Lab-scale tests to used to identify recession resistant top layers 
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�	 BSAS recession linked to silica activity: SAS and yttrium silicate (YS) are 
promising candidates for better recession resistance 

�	 SAS and YS coatings shown to possess good permeation barrier characteristics in 
lab scale demonstrations 
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Yttrium silicate coated CMC vane tested in burner rig 

� Coating system Si/Yttrium silicate 
� No visible damage to CMC vane 
� Some localized spallation of EBC 
� Steady state testing: 2400F for 6 hours 
� Cyclic testing: 100 cycles, 2400F for 3 min., 900F for 2 min 
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FT8 sector rig demonstration of SAS based EBC 

GT 2006-90341 

SAS 

Mullite 

Si 

CMC 

Vedula et al.,       EBC coating before rig test 

� SAS – based EBC successfully tested in FT8 sector rig test 

� UTRC FT8 sector rig represents engine conditions well 

� Component demonstrations offers good opportunity for scale-up of coatings from 
coupons to parts 
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Summary and challenges: EBCs for SiC 

� Silicate based EBCs demonstrated for >50,000hrs cumulative in Solar engine 
field tests 

� SAS and YS based EBCs have the potential of improved recession resistance 
and higher temperature capability 

� Microstructure is key to achieving life targets 

� Key challenges: 

� Processing scale-up 

� Life prediction 
� Empirical methodology 

� Multiple life limiting mechanisms (top coat recession, silicon oxidation, spallation, 
FOD, chemical attack) 
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Ceramic components of interest to UTC

SiC/SiC CMC combustor liners

Industrial Gas Turbines (IGT’s)

� Higher combustor liner wall temperatures
� Reduce CO and NOx
� Improve component durability

Engines for Unmanned 
Air Vehicles (UAV’s)

Auxiliary Power 
Units (APU’s)

A160 Hummingbird

VanesShroud Integrally 
Bladed Rotor

� Enable engine size and weight reduction
� Provide increased electrical efficiency
� Offer overall fuel efficiency

EBC coated Si3N4 components

Microturbines 
for CHP Systems

EBC coated SiC CMCs



Mixed results from applying EBC for SiC to monolithic SiN 

�	 P&W FT8 AS800 cooled vane coated 
with BSAS based EBC 
�	 Vane survived 30 hrs at 70% power, 

multiple shutdowns from 60 to 80% 
power 
�	 FEA results indicated that EBC 

lowers max stress from 69 to 38 ksi 

�	 Solar Turbines CSGT SN282 vane 
coated with BSAS based EBC 

�	 Majority of the vanes failed during 
proof test under transient heating due 
to thermal stress 

�	 FEA results indicated that EBC 
increases max stress from 35 to 46 ksi 
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BSAS-based EBC on Si3N4 results in loss of substrate strength 
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Courtesy of H.T.Lin, ORNL 

� Thermal expansion mismatch between coating and substrate results in cracks in the 
coating that reduce substrate strength 
� CTE of EBCSiC: ~5.0 ppm/°C 
� CTE of Si3N4: ∼ 3.2 ppm/°C 

� EBC debits the strength of silicon nitride 
� > 50% debit at room temperature  
� ∼15% debit at high temperature 
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Multilayer EBC concepts being developed 
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Bond coat system with no strength debit 
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� Top layer candidates and processing being evaluated for environmental stability 
� Focus is on scaling up of coatings to coat integral components 
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Non-line of sight process essential to coat Si3N4 components 

�	 Analytical modeling approach used to 
determine if line-of-sight process (plasma 
spray) could be used to deposit EBC onto 
integral ceramic components 

�	 Plasma spray ruled out based on poor quality 
EBC that would result on much of vane surface 

� Potential NLOS processes being evaluated 
� Chemical vapor deposition 
� Dip coating 
� Sol-gel coatings 
� Pack cementation 
� Electrophoretic deposition 

Various combinations of non-line-of-

sight processes being explored


Flame spray 
pattern modeled 
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Approaches to EBC for Si3N4 
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lona, Spain 

Presented at EBC workshop 2004 
by Beth Armstrong, ORNL:Dip 

Presented at EBC workshop 2005 by 

based top coats 
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coated EBCs 

Presented at EBC workshop 2004 by Charles Lewinsohn, 
Ceramatech: Geomimetic approach for water vapor resistance 

Dave Carruthers : Rishi Raj et al., 
Polymer derived bond coat and oxide 



Summary and challenges: EBCs for Si3N4 

� Identified bond coat system for monolithic Si3N4 that retains substrate strength 

� Need to demonstrate protective EBC systems applied using non-line-of-sight 
processing technique(s) 

� Critical characteristics that are being addressed include 

� Effect top layer on substrate strength 

� Steam stability and barrier function 

� Chemical compatibility between the individual coating layers and with 
substrate material 

� Composition and phase stability over desired temperature range 

� Coating adherence satisfying transient conditions and sustaining centrifugal 
force on rotating components 

� Creep resistance at high temperatures, especially under centrifugal force on 
rotating components 

� Erosion resistance 
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