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APPENDIX O. MODELING TYPICAL METEOROLOGICAL YEAR (TMY) PRICES

In this appendix, the steps the Department used to construct the load-temperature and
price-load models are discussed in detail.

0.1 LOAD-TEMPERATURE MODELING
0O.1.1 Overview
There are five steps to modeling the load-temperature relationship:

e Step I: The temperature and load data were binned, according to the values of the three
variables HE (hour ending), DN (day/night index), and DT (day type, weekday, or
weekend/holiday). The subsequent steps were carried out for each bin.

e Step 2: The historical data were used to calculate, by a least-squares fit, a polynomial
expressing load as a function of temperature, L. = F(T).

e Step 3: The difference between the historical load and the load predicted by the
polynomial was computed and a frequency distribution for these differences was
calculated.

e Step 4: The polynomial calculated in Step 2 was used to compute the typical
meteorological year (TMY) loads as a function of the TMY temperatures in the current
bin.

e Step 5: The frequency distribution constructed in Step 4 was used to generate a set of
random corrections to the TMY loads computed from the polynomial.

0.1.2 Illustration of the Five Steps

This section illustrates each of the steps listed above, using data for the Midwest
(subdivision 3).

0.1.2.1 Step1

The basic relationship between load and temperature is visible in the scatter plots
presented in Appendix O. The load rises at both low and high temperatures, as space-
conditioning energy use increases. Because air conditioning relies almost exclusively on
electricity, while other fuels in addition to electricity are used for heating, electric loads typically
rise more as temperatures increase, so most areas of the country are summer-peaking. The
exception is the Northwest which, because of its mild summers and significant use of electricity
for heating, typically peaks in the winter. For any given temperature, there is a very broad range
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of possible load values. This is due in large part to the variations in time of day and day-type.
For example, a temperature of 60° may occur at 4 a.m. in the summer, or at 1 p.m. in the spring,
on a weekday or on a weekend. Loads will be near their minimum at 3 a.m. on a weekend, and
near their maximum at 3 p.m. on a weekday. Lighting loads represent a significant fraction of the
total load, and will introduce further variation, since early morning or evening hours will
correspond to day or night at different times of the year. A much more accurate relationship
between load and weather can be developed if the data is first sorted on the hour, day-type. and
day-night index. To sort on the day-type, the data must be associated with a particular calendar
year. To construct a day-night index, a record of the daily sunrise and sunset times for each
subdivision is needed. Given this information, the load-temperature data values for each hour of
the year can be assigned to a bin labeled by the variables (Hour,DT,DN). As an example, Figure
O.1.1 shows the data for the hour from 12-1 p.m. on a weekday, for the Midwest. The figure
shows both the historical data and the TMY data. The polynomial fits are also shown. It is clear
that having sorted the data in this fashion leads to a much more regular relationship between load
and temperature.
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Figure O.1.1 Load-Temperature Data for the Midwest (Subdivision 3), 12-1
p-m. on a Weekday.
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0.1.2.2 Step 2

The data shown in Figure O.1.1 was fit to a polynomial using the standard least-squares
algorithm. Some experimentation with different models showed that best results were obtained
with a fit to a third-order polynomial in the temperature:

L =F(T) =a(0) + a(l)*T + a(2)*T" + a(3)*T°

In the figure, the red crosses show the loads as computed by this polynomial relationship,
while the dark blue squares show the original data. The coefficients a(k) are computed separately
for each bin and for each subdivision. It may happen that the range of temperatures seen in the
historical data is less extensive than in the TMY data. For example, 1999 saw an unusually warm
winter in the Northwest (subdivisions 8.1 and 9.1), so the TMY temperatures are lower than the
historical temperatures. In these cases, the load-temperature model needs to extrapolate to low
temperatures and to minimize the error the order of the polynomial may be lowered.

0.1.2.3 Step 3

The polynomial derived in Step 2 gives, for each temperature 7(j) in the bin, a “fitted
load”

LF() = a(0) + a(1)*T() + a(2)*T() + a(3)*T"(j).

With L(j) = original load value, the percentage decrement

DL(@j) = 100*(LF(j) - L(j))/LF().

The values of DL(j) typically range from -15% to +20%. These values are a measure of
the degree to which the actual loads fluctuate around the fitted value predicted by the model.
Figure O.1.2 shows a scatter plot of the load decrements DL versus temperature for the historical
data. Because there is no significant correlation between the size of the load decrement and

temperature, the random fluctuations can be modeled by constructing a frequency distribution of
the values DL and using this distribution to generate random decrements for the TMY loads.
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Subdivision 3, hour 1-2pm, weekday

20.00

15.00

10.00

5.00

0.00

-5.00

Percentage Decrement

-10.00

-15.00

0 50 100 160 200 250 300
Tem perature

Figure O.1.2 Scatter Plot of the Percentage Load Decrements DL
versus Temperature

0.1.2.4 Step 4

The polynomial derived in Step 2 was then used to compute, for each TMY temperature
Tryv(j) inthe bin, a “fitted TMY load LF,,,”

LEpypi) = a(0) + a(1)*Tryp() + a(2)*Trpry *G) + a(3)*Trary ().

The pairs of values of (77, LF7,,y) are plotted in Figure O.1.1 as green crosses. By
construction, they fall on the same curve as the historical fitted values.

0.1.2.5 Step5

The last step was to add random fluctuations to the LF,,,(j) by defining a percentage
decrement for the TMY data, DL;,,,(j), and using the relationship

Lryiy(G) = LFryy(G) - 0.01*DL 1y (G) *LEF 1y4()).-
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The values of DL,,,(j) were generated as random numbers distributed according to the
frequency distribution constructed in Step 4. The result of adding these decrements to the fitted
data is the set of TMY loads to be used in the load-price analysis. These are plotted in Figure
O.1.1 in light blue. Figure O.1.3 plots the frequency distributions for the original decrements DL
and two realizations of the random model for the decrements DL, illustrating that the model
correctly represents the behavior of the random load fluctuations.
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Figure O.1.3 Frequency Distributions for the Percentage Decrements
for the Historical Load Data and Two Realizations of
the Random Model

0.2 PRICE-LOAD MODELING

0.2.1 Overview
There are seven steps in the modeling the price-load relationship:

e Step I: The price and load data were binned according to the values of the two variables:
HT, which defines the hour type as peak or off-peak and SW, which defines the season as
summer or winter. In this analysis, peak hours were from 7 a.m. to 7 p.m. weekdays, with
all other hours defined as off-peak. Summer was defined as the months of May through
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October, and winter as November through April. The subsequent steps were carried out
for each bin.

e Step 2: Price spikes in the historical price data were separated out by setting any prices
above a cap equal to the cap. The price values and hour of occurrence of the price spikes
were saved to be used in Step 7. The cap was set equal to $150/MWh.

e Step 3: The price-load data were sorted on load, and further separated into a set of sub-
bins, each containing approximately the same number of points. The average load and
price in each sub-bin was computed, leading to an approximate relationship PF = G(L).
Here PF is the average price in a given sub-bin and L is the average load in that sub-bin.

e Step 4: The function calculated in Step 3 was used to compute the fitted TMY price for
each value of the TMY load.

e Step 5: The difference between the historical price and the fitted price predicted by G(L)
was computed and a frequency distribution for these differences was calculated.

e Step 6: The frequency distribution constructed in Step 5 was used to generate a set of
random corrections to the average TMY prices.

e Step 7: The price spikes were added back to the series produced in Step 6.

0.2.2 Illustration of the Seven Steps

This section illustrates each of the steps listed above, using data for the Midwest
(subdivision 3).

0.2.2.1 Step1

The relationship between price and load for each subdivision is illustrated in the scatter
plots in Appendix O. While there is an overall trend of higher prices for higher loads, further
analysis indicates that the relationship between the two variables is not nearly as well-defined as
for load-temperature. Binning the price-load data according to hour of day or day of week does
not significantly reduce the spread in prices seen for a given load. The volatility in the price-load
relationship generally tends to be highest during summer months and on-peak hours. As these are
also the times of maximum air-conditioning energy use, to ensure the accuracy of the model, the
data were sorted according to season and hour-type before beginning the quantitative analysis.
This gave four data sets, each of which was modeled separately. Subdivision of the data into the
four season/hour-type sets is illustrated for the Midwest in Figure O.2.1. This binning procedure
was also applied to the TMY load data computed from the load-temperature model.
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Figure O.2.1 Price-load Data for the Midwest (Subdivision 3).

0.2.2.2 Step 2

Prices also show infrequent but large jumps or spikes which are difficult to model using a
continuous distribution (accurate representation of rare events using a continuous distribution
requires very large data sets, which were not available for this analysis). However, price spikes
may contribute significantly to hourly energy costs, so it is important to represent their effects.
The method developed for this analysis removed the price spikes before attempting to model the
price-load relationship, then restored them to the modeled data. The advantages of this method
are that the spiking behavior is included as observed, with no additional assumptions, and it is also
possible to separate out the contribution of the price spikes to the overall energy costs. For i
equal to the hour index of the data point, P(i) the price, and Pcap the price cap, for every i, if P(i)
> Pcap, P(I) was set equal to Pcap. The set of values (i,P(i)) that were adjusted were recorded
for use in Step 7. Steps 3-6 below refer to modeling the capped price data. For this analysis, the
cap was set equal to $150/MWh, corresponding to the approximate upper boundary of the cloud
of points in the price-load. With this cap, several subdivisions had no price spikes.
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0.2.2.3 Step 3

Given the considerable irregularity in the price-load relationship, including the fact that
prices occasionally decrease slightly as loads go up, it is not sufficiently accurate to fit the data
points to a polynomial. Instead, an approximate price-load fit was computed through averaging
as follows: the data in a given season/hour-type bin were sorted according to the load and
grouped into separate load sub-bins. Each sub-bin was labeled by an index m. The minimum and
maximum values in the bin were defined as Lmin(m) and Lmax(m), respectively. Figure O.2.2
shows the result of this binning process for nine sub-bins; each colored slice represents the data in
one bin. The red line represents the $150/Mwh cap. The fitted price PF(m) is defined to be the
average price in bin m. This gives an approximate fit:

PF(L) = PF(m) for Lmin(m) < L < Lmax(m).
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Figure O.2.2 Price-load Data for the Summer, Off-peak Bin

0.2.2.4 Step 4

The next step was to model the randomness in the price-load relationship. Here a
technique similar to that used for the load-temperature data was developed. For each data pair.
(P@G),L()), in load sub-bin m, deviations from the fitted price PF(m) were computed as
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DP(@) = PF(m) - P(j), for Lmin(m) < L(j) < Lmax(m),

and a frequency distribution for the deviations DP(j) was constructed. This means that the shape
of the frequency distribution of DP depends on the load sub-bin m.

0.2.2.5 Step 5

To construct the TMY prices Py,,y, the relationship developed in Step 3 was used. For
every load value L,,,(j), the appropriate fitted value was found:

PF (L) = PF(m) for Lmin(m) < L),y < Lmax(m).
0.2.2.6 Step 6

In this step, random decrements to the fitted TMY prices were computed. For every load
L;y4(), the load sub-bin m it fell into was located, then a random decrement DP,,,(j) was
computed using the appropriate frequency distribution. The TMY price was then defined as

PriyG) = PFE(m) - DPry(j), for Lmin(m) < Lyy(j) < Lmax(m).

0.2.2.7 Step7

The last step was to add back the price spikes. This was done separately for each
season/hour-type bin. The two important properties of the price spikes that needed to be
preserved were their values and the fact that they typically occur in clusters rather than as isolated
values. This is because the external conditions which lead to price spikes in the first place will
generally persist for several hours. The clustering property was preserved by grouping the price
spikes as follows: Given a set of NS price spikes indexed by £, each price spike had associated
with it an hour index i(k) indicating when it occurred in the original time series, and its value
P(i(k)). The set of price spikes was ordered such that i(k) < i(k+1) for all k. If price spikes
occurred in consecutive hours, then i(k+1) - i(k) = 1. This property defined a group of price
spikes. As an example, a list of price spikes, along with the indices i(k) and &, are presented in
Table N.2.1. The number of spikes NS=10 and there are three groups with seven, two, and one
member. The peak load for this bin is 21591 MWh.
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Table O.2.1 List of Price Spikes Occurring for the Summer, Peak Hours for New England
(Subdivision 1)

k i(k) Load(l) Price(I)
1 3083 18018 185.78
2 3084 18372 519.94
3 3085 18502 1000.00
4 3086 18711 1000.00
5 3087 18656 1000.00
6 3088 18558 1000.00
7 3089 18348 1000.00
8 3110 18928 151.36
9 3111 18907 150.56
10 4285 21919 343.80

The initial hour of a group of price spikes is a random variable, more likely to occur at
higher loads. Price spikes were restored to the TMY data as follows: for each group of price
spikes, first an hour was chosen at random which belonged to the same season/hour-type bin. If
the load in this hour was above 90 percent of the maximum load for this bin, the sequence of
prices beginning in that hour were reset to the sequence of spike values in the group. In Table
0.2.1, the first group of spikes contains seven consecutive values, so seven consecutive summer
peak hours will have their prices reset to these values, with the initial hour chosen at random,
subject to the condition that the load in that hour is above 90 percent of 21591 MWh.
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